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ABSTRACT: A gauge principle is applied to mass flows of an ideal compressible fluid subject to
Galilei transformation. A free-field Lagrangian defined at the outset is invariant with respect to global
S0(3) gauge transformations as well as Galilei transformations. The action principle leads to the
equation of potential flows under constraint of a continuity equation. However, the irrotational flow
is not invariant with respect to local SO(3) gauge transformations. According to the gauge principle,
a gauge-covariant derivative is defined by introducing a new gauge field. Galilei invariance of the
derivative requires the gauge field to coincide with the vorticity, i.e. the curl of the velocity field. A
full gauge-covariant variational formulation is proposed on the basis of the Hamilton’s principle and
an assoicated Lagrangian. By means of an isentropic material variation taking into account individual
particle motion, the Euler’s equation of motion is derived for isentropic flows by using the covariant
derivative. Noether’s law associated with global SO(3) gauge invariance leads to the conservation of
total angular momentum. In addition, the Lagrangian has a local symmetry of particle permutation
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which results in local conservation law equivalent to the vorticity equation.
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1 INTRODUCTION

It is generally accepted that investigation of vor-
ticity dynamics is essential for full understanding of
fluid motions. It will be found in the present paper
that the vorticity field and its dynamics are closely
related with various symmetries of fluid flows. Fluid
mechanics is considered a field theory of fluid flows in
Newtonian mechanics, in other words, a field theory
of mass flow subject to Galilei transformation.

There are various similarities between fluid dy-
namics and electromagnetic phenomena. For exam-
ple, the functional relation between the velocity and
vorticity field is the same as the Biot-Savart law
in electromagnetism between the magnetic field and
electric current!]. Sound scattering by vortices!>~*
is analogous to electron scattering by magnetic field.
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Scattering of shallow water waves is investigated in
Refs.[5,6] as an analogy with the Aharonov-Bohm ef-
Furthermore, there
is a law which may be called acoustic Faraday’s
*[8~10] " Thus, one might ask whether the similar-
ities are mere an analogy, or have a solid theoretical
background.

In the theory of gauge field, a guiding principle is
that laws of physics should be expressed in a form that
is independent of any particular coordinate system™**.
To begin with in Section 2, we review the scenario
of the gauge theory in the quantum field theory and
particle physicsl!’12. A free-particle Lagrangian is
defined first in such a way as having an invariant form
under the Lorenz transformation. Next, a gauge prin-
ciple is applied to the Lagrangian, requiring it to have
a symmetry, namely the gauge invariance. Thus, a

fect in quantum mechanics!”.

law
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* This is named in [10] to mean a phenomenon in which an acoustic wave is generated by a vortex ring moving near a soild
body and its signal depends on the rate of change of flux (through the vortex ring) of an imaginary potential flow around the body.

** The Lorentz transformation can be dervied by requiring that the wave equation is invariant between two frames relative

motion(20],
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gauge field such as the elecromagnetic field is intro-
duced to satisfy the local gauge invariance.

There are obvious differences between the fluid-
flow field and the quantum field. Firstly, the field
of fluid flow is non-quantum, which however causes
no problem since the gauge principle is independent
of the quantization principle. In addition, the fluid
flow is subject to the Galilei transformation instead
of Lorenz transformation. This is not an obstacle be-
cause the former is a limiting transformation of the
latter as the ratio of a representative velocity to the
light speed tends to zero. Thirdly, relevant gauge
groups should be different. This is resolved in terms of
a concept of isometric gauge transformation. In Sec-
tion 3, a gauge transformation by a rotation group
SO(3) is considered as a group relevant to fluid flows.

Gauge theory of rotation invariant Lagrangian
with an internal O(3)-symmetry was studied already
for the Bohr model of nuclear collective rotation of
a finite number of modes!*3l. Tt will be found below
that there are various similarities between this sys-
tem (of five field variables) and the present problem
of fluid flows (of infinite dimensions). A similarity es-
pecially to be noted is the fact that both systems are
considered to be dynamical systems, in other words,
so-called d = 1 field theory in the sense that the gauge
field is defined only for the covariant derivative of time
evolution. The gauge field of this model was found to
be the angular velocity .

In the present paper for fluid flows, we seek a sce-
nario which has a formal equivalence with the gauge
theory in the particle physics. In order to go further
over a mere analogy of the flow field to the gauge
field, in Section 4, we define a Galilei-invariant free-
field Lagrangian for fluid flows and examine whether it
has global SO(3)-gauge invariance in addition to the
Galilei invariance. It will be shown that the velocity
field obtained by the variational principle is irrota-
tional, i.e. a potential flow.

In Section 5, the potential flow will be shown
to be not invariant to local gauge transformations,
although it is invariant with respect to global gauge
transformation and Galilei transformation. It will be
shown that the local transformation introduces a new
rotational component in the velocity field (i.e. vor-
ticity), even though the original field does not have
the vorticity. In complying with the local gauge in-
variance, a gauge-covariant derivative is defined by
introducing a new gauge field. Galilei invariance of
the covariant derivative requires that the gauge field
should coincide with the vorticity, which is twice the

angular velocity of local fluid rotation. As a result,
the covariant derivative of velocity is found to be the
so-called material time derivative of velocity. This
finding is reported in Ref.[14] as a brief communica-
tion paper.

Present analysis suggests a new variational for-
mulation. So far, there are known two approaches in
the variational formulations!!>~19. One is the varia-
tion with respect to Lagrangian particle coordinates
and the other is the one with respect to field variables
(Eulerian field variables). The variational formulation
of the Eulerian fields must be supplemented with ad-
ditional conditions of mass conservation and entropy
conservation, and the Lin’s constraint as well in order
to incorporate a particle aspect in the variational for-
mulation. In Section 6, using the notion of isentropic
material variation together with the gauge-covariant
derivative, the Euler’s equation of motion for rota-
tional isentropic flows is derived from the variational
principle equivalent to the Hamilton’s principle. This
formulation is considered to fill in the gap between
above two approaches, i.e. Lagrangian approach and
Eulerian one. The isentropic material variations sat-
isfy the conservation conditions of mass and entropy
within itself, while the Lagrangian functional is repre-
sented by field variables with no additional constraint.

Regarding the material variation without using
additional constraints, there is a similarity to the
Bretherton’s formulation*®. However, an important
difference should be remarked. Namely, in his formu-
lation, the expression of the material time derivative
of velocity is given in advance, or taken as an identity,
while in the present formulation the covariant deriva-
tive (which is equivalent to the material derivative of
velocity) is derived from the gauge principle. In fact,
this is a central point of the present paper.

Another remarkable point in the present ap-
proach is that Eulerian variation of the Lagrangian
defined at the outset results in an equation for a po-
tential flow of a homentropic fluid, which is taken as
a free-field of fluid flow. The Lagrangian functional
does not include a direct description of individual par-
ticle motion which connects the particle position with
the velocity field, except the continuity equation. A
complete variational approach taking into account a
rotational field should be carried out with a material
variation in terms of the covariant derivative, which
takes into account individual particle motion.

There are some byproducts from the present for-
mulation. The global SO(3) gauge invariance implies
a Noether’s conservation law, which is found to be
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the conservation of total angular momentum. In ad-
dition, the Lagrangian has a symmetry with respect
to particle permutation, which leads to a local law
of vorticity conservation, i.e. the vorticity equation.
Thus, it is found that the well-known equations are
related to ceratin symmetries of the fluid system.

2 CONCEPTUAL SCENARIO OF THE
GAUGE PRINCIPLE

Typical successful examples of the gauge theory
are Dirac equation or Yang-Mills equation in particle
physics. Free-particle Lagrangian function Agee, €.8.
for a free electron, is constructed so as to be invariant
under the Lorenz transformation of space-time (z#),

where - -

Afree = 1/11’7“8;1,#] - m’l/]’l/l

1

b= (7 ) ()
m is the mass, 1 is a Dirac wave function of four com-
ponents for electron and positron with +1/2 spins, Al
the hermitian conjugate of 1, and «* the Dirac ma-
trices with u = 0,1,2,3 and z° = ¢ (time), I being
2 X 2 unit matrix. In the Yang-Mills case, the wave
functions are considered to represent internal states
such as up-down quarks.

The above Lagrangian has a symmetry called a
global gauge invariance. Namely, its form is invariant
under the transformation of the wave function, e.g.
1 — el®p for an electron field. The term “global”
means that the phase « is a real constant, i.e. in-
dependent of coordinates. This keeps the probability
density, |1|?, unchanged*.

In addition, we should be able to have invariance
under a local gauge transformation,

P(a) = P (2) = *Op(a) = g(@)p(x)  (2)

where @ = a(z) varies with the space-time coordi-
nates ¢ = (z*). With this transformation too, the
probability density |1|? obviously is not changed.

However, the free-particle Lagrangian Afee is
not invariant under such a transformation because of
the derivative opearator 0, = 0/0z" in Agec. This
demands that some background field interacting with
the particle should be taken into account: Electro-
magnetic field or Gauge field. If a new gauge field
term is included in the Lagrangian function A, then
the local gauge invariance will be attained!!"*?1. This
is the Weyl’s principle of gauge invariance.
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If a proposed Lagrangian including a partial
derivative of some matter field 1 is invariant under
global gauge transformation as well as Lorentz trans-
formation, but not invariant under local gauge trans-
formation, then the Lagrangian is to be altered by re-
placing the partial derivative with a covariant deriva-
tive including a gauge field A(x) (compatible with the
gauge transformation), 8 - V = 0 + A(z), so that
the Lagrangian function A acquires local gauge invari-
ance. The second term A(z) is called also connection.
The point of introducing the gauge field is to obtain
a generalization of the gradient that transforms as

Vi = V'Y = (0 + A)g(2)y
=g(x)(0+A)Yp =g(x)Vy  (3)

where 7' = g(z)¥. In dynamical systems which
evolve with respect to the time coordinate t, the re-
placement 8 — V = 9 + A(z) is made only for the
t derivative. As is done in the d = 1 field theory!'?],
the gauge field in this case is identified as the angular
velocity.

Finally, the principle of least action is applied

SA=0 A= [T A @ @

to
with fixed end conditions at ¢y and ¢;, where A is the
action function.

(1) In the case of the wave function 1) repre-
senting an electron field, the local gauge transforma-
tion (2) of 1) is represented by means of an element
g(z) = 9% ¢ y(1)™ at each point x (g : a real con-
stant), written as ' (z) = e 7*@)qp(z). The gauge-
covariant derivative is then defined by

Vu = au - iun(m) (5)

where ¢ is a constant***, and A, = (—¢, Ay) is the
electromagnetic potential (four-vector potential with
the electric potential ¢ and magnetic three-vector po-
tential Ay, k = 1,2,3). The electromagnetic poten-
tial (connection term) transforms as

A}, (z) = Au(z) + duae(z) (6)
It is not difficult to see that this satisfies the relation
(3), V'4' = gV1p. Thus, the Dirac equation with an
electromagnetic field is derived. (See Appendix A for
its brief summary.)

* The global gauge invariance results in conservation of Noether current!!1:12], See §6.4.
** The unitary group U(1) is the group of complex numbers z = e of absolute value 1.
#x% o — ¢/(hic) with ¢ the light-speed, e the electric-charge, and /i the Planck constant.
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(2) In the second example of Yang-Mills’s for-
mulation of up-down quark field, the local gauge
transformation of the form (2) is represented by
g(z) € SU(2)".
transformation represented by

Consider an infinitesimal gauge

g(z) = exp [igo - a(z)]

=I+igo-a(z) +O0(laf’) |al<1 ()

where o-a = g1a! + 7202 + 03a° with real functions
a¥(z)(k=1,2,3), and o = (01,02,03) are the Pauli
matrices

" 0 1
R
0 —i
02_10
1 0
3= o -1

composing a basis of the Lie algebra SU(2) which
is considered as a real 3-dimensional vector space™*.
The commutation relations are given by***

[O'j,O'k] = QiEjklO'l (8)

The second term on the right hand side of Eq.(7) is
a generator of an infinitesimal gauge transformation.
The gauge-covariant derivative is represented by

vu = au —igo - AM(CU) (9)

where the connection consists of three terms, o- A, =
014, + 0347 + 034> in accordance with the 3-
dimensionality of SU(2), and ¢ the coupling constant

. . . _ 1 2 3
of interaction. The connection A, = (4,47, A})
transforms as

A=A, —2qax A, + 9« (10)

instead of Eq.(6). The following three gauge fields
(colors) are thus introduced: AF = (A, A% Ak AF)
with k£ = 1,2, 3, which are the Yang-Mills gauge fields.
One characteristic feature distinct from the previous
electrodynamic case is the non-abelian nature of the
algebra SU(2), represented by the second term of
Eq.(10) resulting from the non-abelian commutation

rule (8). It is interesting to find that the transfor-
mation law in the d = 1 field theory (Eq.(3.4b) of
Ref.[13]) is equivalent to the non-abelian law (10) if
2A, is replaced by the angular velocity w and 2a by
an infinitesimal rotation angle §6.

In the subsequent sections, we consider fluid
flows and try to formulate the flow field on the ba-
sis of the gauge principle. In this case, the group
of gauge transformation is the rotation group SO(3),
which is also non-abelian. It would not be surprising
if we obtain the same transformation law as Eq.(10).

3 PRELIMINARY STUDY OF VELOCITY
FIELD

3.1 Gauge Transformation of Velocity Field

As a preliminary analysis, we consider the total
kinetic energy K of fluid-flow,

Klv = /M<v<x>,v<x>> Pl

(v,0) = (1) + (v*)* + (v*)?
where v = (v!,v2,v3) is the fluid velocity, and p(z)
the fluid density, M being the space of fluid flow under
consideration.

With a fixed element of the group SO(3), R €
SO(3)****, a rotational transformation of a tangent
vector v (velocity vector) is represented by v’ = Rw.
With this transformation, the magnitude |v| is invari-
ant, that is isometric: (v’,v') = (Rv, Rv) = (v,v),
which is not more than the definition of the orthogo-
nal transformation. In matrix notation R = (R}), a
vector v is mapped to (v')* = Rjv/. Hence

(W', v") = () (v') = Riv? Rjo*
= v*o* = (v, v)
where the orthogonal transformation is described by

RiR, = (R")IR, = (R"R), =0]  (11)

and RT is the transpose of R, equal to the inverse
R™'. Using the unit matrix I = (6%), this is rewrit-
ten as

R"TR=RR" =1 (12)

* SU(2) is the special unitary group, consisting of complex 2 x 2 matrices g = (g;;) with detg = 1. The hermitian conjugate

" = (g];) = (5;) is equal to g~!

matrices of trace 0.

where the overbar denotes complex conjugate. Its Lie algebla SU(2) consists of skew hermitian

** The vector space SU(2) is closed under multiplication by real numbers o* (e.g. see [11]).
*#* The structure constant €;5; takes 1 or —1 according as (jkl) is an even or odd permutation of (123), and 0 if (jkl) is not a

permutation of (123).

*Hx% G0(3) is a group of special orthogonal transformations of R® characterized with detR = 1.
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The total kinetic energy K is also invariant, since the
mass in a volume element d3z is invariant by the ro-
tational transformation, R[pd®z] = p' R[d®z] = pd®x,
where p' = p since scalars are invariant by the trans-
formation. Thus, K has the global gauge invariance.

Similarly, it is not difficult to see that the kinetic
energy K is invariant under a local transformation,
v(z) = v'(z) = R(z)v(xz) depending on a point z,
where R(z) € so(3) at Vo € M

/ (R(2)v(z), R(z)v(2))R(z)[p(x)d’2] =

[ @), o@)oa’s

Thus, the local gauge invariance is also satisfied with
the kinetic energy K.

3.2 Galilei Transformation of a Velocity

Field

The quantum field is subject to the Lorenz trans-
formation, whereas the field of fluid flow is sub-
ject to the Galilei transformation. This difference
is not an essential obstacle to the formulation, be-
cause the Galilei transformation is regarded as a lim-
iting transformation of the Lorentz transformation
of space-time (z#) = (ct,x) as v/c — 0*. In the
Lorentz transformation, a line-element of world-line
is a vector, ds = (cdt,dx) with the Minkowski metric
g;; = diag(—1,1,1,1), and its length |ds| is a scalar,
namely a Lorentz-invariant, where

|ds|? = —c?d#? + (dz, dz)
= —c2(dt")? + (d=’',dz’) (13)

between two frames, (¢, x) and (¢, '), and the light
speed ¢ is an invariant[29.

Scalar product of a 4-momentum P = (E/c,p)
of a particle of mass m with the line element ds is

(P,ds) = —gcdt+p-d:c _ (p-&— E)dt
=m(v? — )dt = —mocidr (14)

where myg is the rest mass, v and p = muv are
3-velocity and 3-momentum of the particle, res-
pectivelyl™-21]and

— 2 — Mo
E =mc m_(l—ﬂz)l/z
g=2 dz = vdt

c

dr = (1 - %)'/2dt

* Spatial components are denoted by bold letters.

(proper time)
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The leftmost side of Eq.(14) is a scalar product, i.e.
an invariant with respect to the Lorentz transforma-
tion, and the rightmost side —mgc?dr is an invariant
as well, since Eq.(13) gives |ds|? = —c?dt?*(1 — 3?) =
—c2dr2. The function A = p- & — FE is what is called
the Lagrangian in Mechanics. Hence it is found that
either of the five expressions of Eq.(14) might be taken
as the integrand of the action A of Eq.(4).

Next, we consider a Lorenz-invariant Lagrangian
A(LO) in the limit as v/c — 0, and seek its appropriate
counterpart Ag in the Galilei system. In this limit,
the mass m and energy mc? are approximated by mq
and mo(c® + v%/2 + €) respectively in a macroscopic
fluid system (see Ref.[22], §133), where ¢ is the inter-
nal energy per unit fluid mass. The first expression
of the second line of Eq.(14) is, then asymptotically

1
mv? —me® = m0v2 — My (02 + 51)2 + e)

= (pdz) (%vz —e— 02)

where mg is replaced by p(x)d®¢. Thus, the La-
grangian A(LO) would be defined by

A0 dt = /M Bap(z) <%(v(m),v(m))—e—02> dt (1)

The third —c?dt term is necessary so as to satisfy
the Lorenz-invariance (see Ref.[21], §87). It is obvi-
ous that the term (v(z),v(z)) is not invariant with
the Galilei transformation, v — v’ = v — U. Using
the relations de = vdt and dz’ = v'dt = (v — U)d¢’
with respect to two frames of reference moving with
a relative velocity U, the invariance (13) leads to

dt’ = dt + <l2 < — (v, U) + %U2> + O((v/c)4)> dt
c
(16)
The second term of O((v/c)?) on the right hand side
makes the Lagrangian A(Lo)dt Lorenz-invariant exactly
in the O((v/c)?) terms in the limit as v/c — 0.

When we consider a fluid flow as a Galilei sys-
tem, the following prescription is applied. Suppose
that the flow is investigated in a finite domain M in
space. Then the c?dt term gives a constant c2Mdt
to A(Lo)dt, where M = / d®zp(z) is the total mass

M

in the domain M. In carrying out variation of A, the
total mass M is fixed as a constant. Next, keeping
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this in mind implicitly, we define the Lagrangian Ag
of a fluid motion in the Galilei system by

Aedt = /M d3mp(m)(%(v(m),v(m))—e)dt (17)

Only when we need to consider its Galilei invariance,
we use the Lagrangian A(LO). In the Lagrangian for-
mulation of subsequent sections, local conservation of
mass is imposed. As a conequence, the mass is con-
served globally. Thus, the use of Ag will not cause
serious problem except the case requiring its Galilei
invariance®.

Under the Galilei transformation from one frame
2 to another z' moving with a relative velocity U, we
have

r=(tz)=>z' =, 2)=(tz-Ut)
v=(Lv)=>v=(1,v)=(1,v-U)

(18)

8t=8t/—U-V' VZV/

hence O+ (v-V) =0y + (v'- V')

where
0, =0/0t
V = (01, 02, 03)
Oy, = /0"

3.3 Infinitesimal Rotational Transformation

For later use, we consider a variable orthogo-
nal transformation R and an associated infinitesimal
transformation where an arbitrary vector vo is sent
to v = Rwg. Suppose that a varied orthogonal trans-
formation is written as R’ = R + JR for an finites-
imal variation 0 R. We then have dv = dRvy =
(SR)R™'v, so that we obtain the infinitely near vec-
tor v + dv by the action of a general R as

vov+dév=(I+ERR ")v

where (JR)R™" is skew-symmetric for othogonal ma-
trices R and R+ 0R**.

Analogously to Eq.(7), the infinitesimal gauge
transformation is written as

R(z) =exp[0] =T+ 0+ 0(|0)*) = I+

(Eq10' + E26* + E56°) + O(|0]?) (19)

where R € SO(3), |0] < 1, and 8 = E6" is a skew-
symmetric 3 x 3 matrix. The second term @ of Eq.(19)
is an element of the algebra so(3), and (Eq, Es, E3)
are bases of so(3)

00 O
El = 0 0 -1
01 0
0 01
E;,=| 0 00 (20)
-1 0 0
0 -1 0
E;=|1 0 0
0 0 0
Their commutation relations are given by
[Ej; Ex] = €jn B (21)

which is equivalent to Eq.(8) if Ej is replaced by
O'k/Qi.

Introducing an axial vector 6 defined by 6 =
(6*,6%,6°)T, we have two equivalent expressions for

multiplication with a vector v = (v',v?,v%)T

Ov (tensor multiplication) =

0 x v (vector product) (22)

In the analyses of this section 3, it is observed
that key elements of framework of the gauge princi-
ple are there in fluid flows. Therefore, we might ask
whether we have a gauge field already in Fluid Dy-
namics, in the subsequent sections.

4 FREE-FIELD LAGRANGIAN OF FLUID
FLOWS

Suppose that a free-field Lagrangian of flows on
a subdomain M3 C R? is given by***

Aglu, p, 9] = /M3 &P [p(x) <%(u u) — e(p)>:| +

/ Bz é(x) [3tp + div(pu)] (23)
M3

where u(z,t) = (u?) is the velocity field, p the fluid
density, €(p) the internal energy per unit mass (spe-
cific internal energy), ¢(x) a scalar function. The first

1 1
* Second term of Eq.(16) is written in the form of total time derivative since (v,U) — §U2 = (d/dt) ((:z:(t),U) — §U2t).

Therefore it is understood in Newtonian mechanics that this term does not play any role in the variational formulation.
** Since RRT = I and (R + 0R)(R +6R)™ = I from (12), we have (JR)R™* + (R"H)T(6R)T = 0.
**% This is the Lagrangian of Herivell!3] without CC Lin’s constraint (Ref.[16, Sec.B], Ref.[23]).
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integration of the Lagrangian is of the usual form gen-
eralized to a fluid flow, while the second integration
term represents a constraint to satisfy the continuity
condition with the velocity field u by using the scalar
function ¢(z) of Lagrange multiplier. It is assumed
that the fluid is homentropic, i.e. entropy is constant,
hence the internal energy € is a function of density
only. Then, the entropy is kept constant at all times
due to the non-dissipative property of the ideal fluid.

It is seen from Section 3.2 that the first term
of the Lagrangian A; is regarded to be invariant with
respect to Galilei transformation according to the pre-
scription that Agdt of Eq.(17) is replaced by A(Lo)dt
of Eq.(15). The second term is also verified to be
invariant by using Eq.(18)

Op+ (u-grad)p + divu = 9y p'+

(u'-grad)p’ +div'u’  with p' = p(z')
The scalar function ¢(x) (corresponding to a La-
grange multiplier) may be a different function ¢'(z")
in order to comply with the Galilei transformation.

Regarding the gauge transformation, it is al-
ready shown in Section 3.1 that the term [ d*zp(u, u)
is invariant with respect to both global and local
gauge transformations by the rotation group SO(3).
In addition, the scalar term div(pu) can be shown
to be invariant with respect to a global transforma-
tion by a fixed element of SO(3), and other scalar
functions are invarinat as well. Thus, the free-field
Lagrangian Ay is invariant with respect to a global
gauge transformation as well as Galilei transforma-
tion.

The variational principle is described with the
action A defined in terms of the Lagrangian A, as
follows

0A=0
where

t1
A= Af[u,p, @)dt

to
Independent variations are taken for the field vari-
ables ¢, u, and p, that is!*516l
oAy = /d3£ [5¢(3tp + div(pu))+
du - (pu — pgraded)+

6p(%v2 —h—0p—u- grad¢)] =0

Kambe T: Gauge Principle and Variational Formulation 443

where h = € + pde/dp = € + p/p (since de/dp = p/p?
with a fixed entropy) is the specific enthalpy. Note
that dh = (1/p)dp in this case (p: the pressure).
Thus, the variational principle, A = 0 for indepen-
dent arbitrary variations d¢, dv and Jp, leads to

d¢: Op+divipu) =0 (24)
du: u =gradg (25)
op: %vz—h—ﬁtqﬁ—u-gradqﬁ:
Lo
- (thﬁ + 507+ h) =0 (26)

The first equation is just the continuity equation for
a compressible fluid. The second describes that the
velocity u has a potential ¢, that is, the flow is a po-
tential flow and the wu-field is irrotational. The third
equation corresponds to an integral of the equation of
motion. In fact, applying “grad” to Eq.(26), we ob-
tain the Euler’s equation of motion of a perfect fluid
for a potential flow with u = grad¢

1
Oyu + grad <§v2> = —grad h (27)

where

grad h = 1 grad p
p

Thus, as far as the action principle associated with A
is concerned, we obtain the Euler’s equation of motion
for potential flows of a perfect fluid. It is interesting
to recall that the flow of a superfluid (boson) in the
ground state is described by a velocity potential. The
fact that this equation describes the “ground state”
is consistent with the Kelvin’s theorem of minimum
energy?¥, which asserts that a potential flow has a
minimum kinetic energy among all possible flows sat-
isfying given conditions*.

Note that the left hand side (denoted by D;u)
of the Eq.(27) is the material time derivative for the
potential flow velocity u* = 9.¢

1
Diu := diu + grad(§v2) =Ju+ (u-grad)u (28)

In fact, we have 9;(v?/2) = vFOw* = (04¢)0;01¢ =
(8kq5)8k81q5 = ’l)kakvi.

Usually, in fluid mechanics, it is examined
whether the equation derived from the variational

* Suppose that the velocity is represented as v = V¢ + v’ with div ' = 0 and div v = V2¢ (given), and that the normal
component n - v’ vanishes and n-v = n- V¢ is given on the boundary surface S (n being a unit normal to S), where ¢ is a scalar
function solving V2¢ = given with given values of - V¢ on S. Then f(V¢+v’)2d3:z: = f(V¢)2d3:z:+f(v’)2d3a:+2 fs ¢v'-ndS =
f(V¢)2d3:z: + f(v’)2d3:z: > f(V¢)2d3:z:. This is a generalization to a compressible case.
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method (i.e. Euler’s equation of motion) is invari-
ant with respect to Galilei transformation. In fact,
the Eq.(27) is invariant with the Galilei transforma-
tion (18): u = v’ + U, & = 9y — U - grad’, since
grad = grad’, and

Dyu = diu + (u - grad)u
=0y —U -grad)u’ + (u' + U) - grad'u’

= Opu' + (u' - grad')u'’
= Opu' + grad’ <%(v’)2> =Dju’ (29)

The relation u = w' + U and u = grad¢ require
¢(z') = ¢'(x") + U - x'.

It is noted that local gauge transformation of
the velocity field u'(z) = R(z)u(z) gives rise to
a rotational component in the velocity field, as is
shown in the next section. The variation considered
in this section can represent only irrotational veloc-
ity field. In order to resolve this incompleteness, a
gauge-covariant derivative is defined in the next sec-
tion by introduing a gauge field, and in Section 6 a
complete variational formulation is proposed on the
basis of the Hamilton’s principle in terms of material
variations and the gauge principle.

5 LOCAL GAUGE TRANSFORMATION

5.1 Infinitesimal Rotational Transformation

Let us consider an important consequence of the
local infinitesimal gauge transformation (19): R(x) =
exp [0(z)] = I+6 = I+ (E16" + E»0° + E36%), where
0 € SO(3), and |0] < 1. According to Eq.(20), the
transformation matrix @ = E60* is a skew-symmetric
3 x 3 matrix. Representing the multiplication Qu in
the form of a vector product according to Eq.(22), the
velocity u is transformed as

u(z) = u' = R(z)u(r) ~ u + Ou
=u+0xu (30)

It is remarkable that the transformed field w' =
R(z)u(z) is rotational even if u is irrotational. In
fact, one can represent the second term in terms of a
vector potential B and a scalar potential f defined by

9><u:cur1B+gradf

together with the gauge condition, div B = 0. Taking
curl of 6 x u, we have

curl (6 x u) = curl (curl B) = —AB

where A is the Laplacian. The vector potential B is
determined by the equation

AB = (0 - grad) u + (div )u—
(u - grad) @ — (divu)@

Thus, it is found that the gauge transformation in-
troduces a rotational component in the velocity field
even if u is irrotational.*

Henceforth, the velocity vector is denoted by v
instead of u in order to emphasize explicitly that the
vector v denotes a velocity field of a material particle,
which is inevitably rotational.

5.2 Gauge Principle in Dynamical Systems

The Lagrangian Ay of Eq.(23) has been shown
to be invariant under a global SO(3) gauge transfor-
mation. We now require that not only the Lagrang-
inan (defined in the next section) but its variational
form should be invariant under local gauge transfor-
mations.

In addition, it was noted in the introduction
that the gauge field 2 of dynamical systems, such
as in the d = 1 field theory of the model of a nuclear
rotation'?], is defined only for the covariant deriva-
tive with respect to the time ¢. This means that the
replacement in the present fluid flows would be of the
form, D; — V; = D; + (x) where D; defined by
Eq.(28) denotes the material derivative of a poten-
tial flow, while the spatial derivatives are unchanged
O — 0 (k=1,2,3).

According to the scenario of gauge theory (e.g.
[12,13]), the velocity field v and the covariant deriva-
tive Dyv should obey the following the transformation
laws

v v =explO(t,z)]v (31)
Viv = Viv' = exp [0(t, z)] Vv (32)
where the covariant derivative is defined as follows

Viv:=Dyv+ Qv

* The new component signifies rotational motion of fluid, i.e. local rotation of fluid material. If particles are equivalent and
indistinguishable such as the superfluid He?, the rotational motion would not be captured. The superfluid He* obeys Bose-Einstein
statistics in which particles are equivalent and indistinguishable. Therefore the flow would be irrotational. This is not the case when
we consider the motion of a fluid composed of distinguishable particles such as in an ordinary fluid. Local rotation is distinguishable
and there must be a formal structure to take into account the local rotation of fluid particles.



Vol.19, No.5
= dv + grad(v?/2) + 2 x v (33)

and 0,2 € SO(3), i.e. 8 and 2 are skew-symmetric
matrices*, where 2 is the axial vector counterpart of
f2. From the above Eqs.(31)~(33), it is found that
the gauge field operator £2 is transformed as

02— 2 =e0e — (9%)e™ (34)

Corresponding to the infinitesimal transformation,
we have the expansion, e = 1+ 6 + (|0|?). Using 60
instead of 6

v—-v =(1+00)v=v+3d0xv (35)

up to the first order, and the gauge field 2 (in vector
form) is transformed as

2 02 =0+56x02-0,00) (36)

The second term on the right hand side came from
0012 — 260. This is equivalent to the non-Aberian
transformation law (10) for the Yang-Mills gauge field
A, if 2q A, is replaced by £2 and 2ga by —é6 only for
pn=_t.
5.3 Galilei Invariance

We require that the covariant derivative (33)
is invariant with respect to a Galilei transformation.
Applying Eq.(18) with using (.) insteaf of (‘) to de-
note Galilei-transformed variables (e.g. v’ = v, is
written as v — U), the covariant derivative Vv =
dyv + grad(v?/2) + 2 x v is transformed to

1
(0, —U -V, (v +U) + V*§|v* +U|?+

QX (V. +U) =8, v+ Vi(v2/2) + 2 x v, —
(U-V)v.+2xU + V. (v.-U)

since V.(U?) = 0. We expect that the right hand
side is equal to 0y, v« + V. (v2/2) + 2, X v., which
requires
0=(R2-2,)xv,—(U-V,)v,+
2 x U+V.(v.-U)= (R-0,) xv,+
(R—-V, xv,)xU

where the following vector identity is used: U x (V, x
v.) = —(U - V,)v. + V(U - v,) with a constant U.
The last expression vanishes identically, if

N=Vxuv

. . (37)
2, =V, xv,=Vxv=12
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Thus, the Galilei invariance of Vv requires that the
gauge field £2 coincides with the vorticity

w=Vxw

and the covariant derivative Vv is represented by

Vv = 8v+ V(%vz) +wxwv
=0w+ (v-V)v (38)

which is usually called as the material time derivative
or Lagrange derivative of v. It is interesing to ob-
serve that this expression of gauge-covariant deriva-
tive Vv is consistent with that of geometrically-
covariant derivative (see Ref.[25, §7]).

6 HAMILTON’S PRINCIPLE UNDER
ISENTROPIC MATERIAL VARIATIONS

We return to the variational principle again.
From the analysis based on the local gauge invariance,
we have arrived at the covariant derivative (38), which
is the material time derivative of velocity. This sug-
gests that the variation should take into account dis-
placement or motion of individual particles!7-18]. In
other words, the gauge invariance requires that laws of
fluid motion should be expressed in a form equivalent
to every individual particle. In order to comply with
the local gauge invariance, we carry out material vari-
ations according to the following scenario consisting
of three conditions:

(1) Kinematic condition: All the variations are
taken so as to follow the trajectories of material par-
ticles, and all the mathematical expressions are given
for a fixed mass element defined by Eq.(39) below.
As a consequence, the equation of continuity must be
satisfied always. This is given by Eq.(41).

(2) Condition of physical material: An ideal fluid
is defined by the property that there is no dissipative
mechanism within it such as dissipations caused by
viscosity or thermal conductivity (see Ref.[22, §2]).
As a consequence (see Ref.[22, §49]), the entropy s
per unit mass (i.e. specific entropy) remains constant
along the motion of each material particle, namely
isentropic, which is expressed by Eq.(43). Here, the
fluid is not necessarily assumed to be homentropic.

(3) Gauge condition: All the expressions of the
formualtion must satisfy both global and local gauge
invariance. Therefore, not only the action functional

* The property 8, € SO(3) means that we are considering the principal fiber bundle.
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A = [ Aguiadt, but its varied form must be gauge-
invariant, and the gauge-covariant derivative V of
Eq.(38) should be used for the variation, where the
Lagrangian Aqyuiq is defined below by Eq.(48) newly
for flows of an ideal fluid. In this Lagrangian, there is
no additional constraint term such as the second term
of Eq.(23).

In the following, we consider an isentropic ma-
terial variation according to the above scenario. As
a result of the variational formulation satisfying local
gauge invariance, we will obtain the Euler’s equation
of motion for an ideal fluid. Fortunately, there are
some byproducts of the present formulation. From
the global gauge invariance of SO(3), we will obtain
a Noether’s conservation law, which is found to be
the conservation of total angular momentum of the
system. In addition, the Lagrangian has a symmetry
with respect to particle permutation, which leads to
a local law of vorticity conservation, i.e. the vorticity
equation. Thus, it is found that the well-known equa-
tions are related to symmetries of the fluid system.

6.1 Flows of an Ideal Fluid

Suppose that individual fluid particles are distin-
guished by the coordinates a = (a’) = (a,b,c) € R,
and that their motion is described by a flow &€ (map)
which takes a particle located at £ya when 7 = 0 to
the position £(1,a) = €,a at a time 7. Suppose that
the coordinate parameters (a,b,¢) remain constant
following the motion of the fluid paticles, then the
particle velocity is given by v = 9;&(7,a) = v(t,x),
where 9, = 8/07*. Consider a mass of fluid contained
in a volume M, moving with the material particles.
All the particles Ya € A (where A C R?) are mapped
to &(7,a), which composes a moving mass M,. It is
convenient to assign these coordinates (a, b, ¢) so that
the three-form da = dadbdc represents the mass in
a volume element d3¢ = dzdydz

d®m = d®a = dadbdc (39)
Hence, a = (a,b,c) is considered a mass-coordinate.
Then the mass density p at £(t,a) = (z,y, 2) is ex-
pressed by d®m = pd®¢ and also given by the inverse
of the Jacobian J = d(x)/d(a) of the map

d3m = pd3¢

2003
_0(a,b,c) 4
= b 1o
o(z,y, 2)
7= 0(a,b,c)

Rate of change of a form F' along a particle motion
is represented by the Lie derivative £(F'). The mass
elelment is a three-form F? = d®m = pd®¢. Then,
invariance of a mass along the particle trajectory is
represented by

0= %(d3m) = Lx(d’m) = Lx(pd*€)
= [8ip + div(pv)]d?¢ (41)

where Lx is the Lie derivative with the velocity vector
X = 8y + vi(t,x)0;**. Therefore, the second integra-
tion term of Eq.(23) identically vanishes. The Eq.(41)
is equivalent to the continuity equation, and rewritten
as

dp

= (O +v-V)p=—pV - v (42)
where d/dt = 0;+v - V. The isentropic motion is rep-
resented by Lx(spd3¢) = 0. Recalling the following

identity
O(sp)+div(spv) = p(Ors+(v-V)s)+s(0 p+div(pv))

and using Eq.(41), we obtain the equation of entropy
conservation

ds/dt = s +v-Vs=0 (43)

The invariance of a following the fluid motion of the
velocity field v is expressed by
da’/dt = da’ + (v - V)a' =0
(44)
a = (a*,d? a®) = (a,b,¢)

Henceforth, we consider an isentropic material varia-
tion satisfying Eqs.(42)~(44).

6.2 Lagrangian and Variational Formulation

Let a set of varied particle-trajectories be given
by &(1,a : ¢) for € € (—1,1), where each value of &
denotes a single varied trajectory of all material par-
ticles of Va € A and the initial mass My (or A) is
chosen arbitrary within fluid. The trajectory ¢ = 0 is
the one £.a = £(7, a) to be investigated. We consider
a particular set of trajectories £(7,a : €) given by

&(r,a:e)=¢.a+en(€, a) for Vac A

* The time coordinate used in combination with the Lagrangian particle coordinates a is denoted by 7. Inverse map of
x =¢(1,a) is a = a(t,x), where t = 7, € = (x,y, 2) are Eulerian coordinates.

** Lie derivative Lx is the derivative as one moves along the trajectory generated by a tangent vector X = 8¢ + v*(t,x)8;, i.e.
the derivative 8/97 with a fixed. Hence, local mass conservation is given by Lx(pd3¢) = [0¢p + div(pv)]d®¢ = 0 for derivatives of

forms.
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The variation vector field 5(7) is constrained to vanish
at some endpoints (e.g. at to and #;) of the trajectory
as well as on the moving boundary surface OM, of
M, namely

n(to) =0 n(t1) =0
for any &, € M, (45)
n(€s) =0

for any ¢ and at any £g € OM, (46)

where each boundary point £ ¢ € OM, moves with the
fluid particle. Differentiating &(7,a : ¢) with respect
to € with a fixed

o -
%5(77 a: €)|€=07a7‘r:ﬁxed = n(£ra) (: = 65) (47)

which is classically called a virtual displacement and
written as d€.

Suppose that the Lagrangian of flows of an ideal
fluid is defined by

Analéral = [ 5 0,0)©p(O)d%-

P

| comece vaca s
M,

e = e(p, s) is the specific internal energy with s be-
ing the specific entropy. The Lagrangian Anyiq is of a
form generalized to a macroscopic continuous medium
of a fluid. The first and second integral are written
as I, and I respectively.

The variational principle, namely the Hamilton’s
principle, is described by 6.4 = 0, where the action
functional is defined by

t1

A= Anyia[€,a + enldr

to

t1
= / (L&, a+en) — L[€,a +en))dr
to
Taking variation with respect to ¢ with a fixed, i.e.
0 = (8/0€)|.=0, the variational principle reads

t1

((511 - (512)(217’ =0 (49)

to

0A =

6.3 Material Variation
First, we consider variation of the second inte-
gral I,

55=6A44m$mo&£
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= / de pd3€ + / ed(pd3€) (50)
M, M,
The variation 6 (pd3€) is given by

§(pd*€) = (Op + p divi)d®€ (51)

This is obtained from Eqs.(41) and (42), because the
Eq.(47) is observed as describing that 7 is the velocity
at a time € = 0 of a motion for which the parameter &
plays the role of time, where the convective derivative
d/dt and velocity v in Eq.(42) are replaced by § and
7, respectively. Here, we take the material variation
with keeping a fixed, i.e. §(pd3¢) = 0. Hence, the
variation is constraint to satisfy

(0p + pdive)d®€ = Ly (pd®€) = Ly (d*m) =0
Y =0.+1';) (52)

Thus, the second term of Eq.(50) vanishes.

Using the d-operation, the isentropic variation
is given by ds = 0. Then, using a thermodynamic
relation de/0p = p/p* and Eq.(52), we have

Oe Oe D

de = ap&p—i— 8865 pzép ple’l] (53)

Thus we obtain

0l = —/ pdivnd3€

P

= —/ div(pn)d3£+/ (n - grad)pd3¢
M, M,

=—/ pm@gmm%+/'@m®mm%
oM, M, (54)

where n is a unit outward normal to the bounding
surface M.

Next, we consider variation of the first integral
I

o =0 /M %@,v)p(x)d%

=/ (v,&v)pd3£+/ %(v,v)5(Pd3£)
M, M, (55)

The second term vanishes as before. Regarding the
first term, we use the expression pd3¢ = dm(a), em-
phasizing that dm is an invariant mass element. In
addition, we take the velocity variation with keeping
a fixed

dv = 5(9,€) = 9, (&) = d,m



448 ACTA MECHANICA SINICA 2003

Furthermore, the following equation is used

(v, dv)dm = (v,0.-n)dm

= > {o,mhdm — (Vo,m)dm

(56)
where 0, (dm) = 0, and the covariant derivative Vv
defined by Eq.(33) is substituted in the last term in
accordance with the gauge principle. This is consis-
tent with the fact that the derivative d-v (with a
fixed) is equivalent to rate of change with respect to
a fixed material particle and should be given by the
covariant derivative Eq.(33). It can be shown with-
out difficulty that the Eq.(56) satisfies the local gauge
invariance. Then, we have*

Ly :/ (v, dv)dm
M-

/<Wumm% (57)
M

Substituting Eqs.(54) and (57) in Eq.(49), we
obtain

/ (o), m(t) pd*€ —
M,

t1

(v(to),n(to))pd*€+
My,

t1

t1
/ dT/ p(n(xzs),n)dS — dr-
to oM,

to

/MT < <Vtv + %w) , n> pd®€ =0 (58)

First, three terms vanish due to the constraints of the
variation field 1 of Eqs.(45) and (46). The only re-
maining expression, the last term, must vanish for ar-
bitrary variation vector 1. Thus, the following equa-
tion is derived from the variational principle

1
Vit Vp=0 (59)

This is the Euler’s equation of motion itself. In fact,
using Eq.(38) for V,v, we have

dv+wxv+V <%v2> =-Vh (60)

or equivalently, using the last expression of Eq.(38)
and Vh = (1/p)Vp

O+ (v-V)v= —%Vp (61)

This is to be supplemented with the equations of con-
tinuity (43) and entropy (43).

The present variational formulation using the co-
variant derivative Vv is natural in the following sense
that, under the boundary constraints of Eqs.(45) and
(46) together with the mass conservation (52) and en-
tropy conservation ds = 0, no additional condition is
imposed to Aguiq to derive the equations of motion of
an ideal fluid.

The form of Lagrangian (48) is compact with
no constraint term, and the variation is carried out
adiabatically by following particle trajectories. In the
conventional variations!'®19], the Lagarangian has ad-
ditional constraint terms which are imposed to obtain
rotational component of velocity field**, or the covari-
ant derivative such as Eq.(38) is used as a prerequisite
identity for the variation!'®].

6.4 Noether’s Theorem

Global gauge transformation of a vector v is rep-
resented by v(€) — v'(€) = Rv(€) with a fixed ele-
ment R € SO(3) at every point & € M,, which is
nothing else than a uniform rotation. Consider an in-
finitesimal uniform rotation vector 60 = |§6]e, which
is an infinitesimal rotation of the angle |66] about the
axis in the direction denoted by a unit vector e. Then,
an infinitesimal global gauge transformation is defined
for the position vector as

€ =€+00x¢ (62)

Next, consider an infinitesimal variation of the La-

grangian Aguiq due to this transformation. From
Eqgs.(57) and (54), the variation is given by
9 3 2
dAgyia = o (v,m)pd”€ + p{n,n)d”S—
T JM, oM,

LGt

where 17 = 60 x & with a constant vector 86, and
n is a unit outward normal to OM,. The last term
vanishes owing to the equation of motion (59). The
Noether’s theorem for the conserved current is given
by dAquiga = 0, which is expressed by

0
a7 /MT {v,1(€))pd’€ + /8MT p(n(€s),n)d*s :(24)

* Regarding the first term on the right of Eq.(57), fMo O-(v,mydm = 9, fM0<v,n)dm =0, fM (v,m)pd3€.
** Although the Lin’s constraint yields a rotational component, it is shown that the helicity of the vorticity field for a homen-
tropic fluid in which grads = 0 vanishes['?). Such a rotational field is not general because the knotted vorticity field is excluded.
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Using n = 80 x &, it is readily verified that this rep-
resents the conservation law of total angular momen-
tum. In fact, using the vector identity (v,d0 x &) =
66 - (¢ x v), and noting that 60 is a constant vector,
the first term is

-0 -0
56 - — d?¢ =66 - —L(M
5 [ Exvomie=00- Z100) (6
The integral term denoted by L(M.) is seen to be the
total angular momntum of M. Similarly, the second
term is

60 - € x (pnd®S) = —66 - N(OM,)  (66)
oM,
The surface integral over OM, is denoted by
—N(OM,), since N(OM;) is the resultant moment
of pressure force —pnd?S acted on a surface element
d2S from outside. Since 60 is an arbitrary constant
vector, the Eq.(64) implies the following

9
or
Thus, it is found that the Noether’s theorem for

SO(3) gauge transformation leads to the conservation
of total angular momentum.

L(M;) = N(9M;) (67)

6.5 Particle-permutation Symmetry and

Conservation Equation

Suppose that the fluid is homentropic and has
a uniform value s¢ (say) of the entropy. Then ev-
ery individual particle is equivalent under adiabatic
condition. Consider an adiabatic permutation of par-
ticles @ — a’ (without affecting the actual velocity
field), in which the original position of a particle a
in the a-space is denoted by x¢(a) and the new po-
sition by (a) : = x¢(a'), and suppose that the mass
dm = d®a’ at a’ is replaced by the same amount of
mass dm = d3a at a. This is expressed by*

oa’, b, c)

d(a,b,c) =1 (68)

Possible invariance with respect to this permutation
is rephrased as an invariance with respect to a dif-
feomorphic transformation under the condition of
volume preserving (da is conserved) in the mass-
coordinate a-space and entropy conservation.
Suppose that the permutation of particles is car-
ried out adiabatically, hence s has the same uniform
value s(a) = sg after the permutation too, and further
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that the new density p(a) of individual particles is
transformed so as to have the desnity po(a’) and pre-
serve the volume d*z(a) = d3z¢(a’), hence the mass
is conserved: dm = p(a)d®z(a) = po(a’)d3zy(a’) by
the permutation.
For an infinitesimal transformation o’ — a =

da(r,a) = (da,db,dc), the Eq.(68) implies

dba  00b  doc

Ba T T ae
Following Salmon (see Ref.[19],84), such a volume-
preserving vector field da(7,a) is represented as

da =V, x0A(a) (69)

with some vector potential JA(r,a) where V, =
(Oa, Db, O.) is the gradient operator in the a-space.

Once the above permutation is carried out at an
initial instant, subsequent development is governed by
the equations of motion: Eqs.(61) and (42)~(44). The
variation da and its associated variation field A are
arbitrary, but assumed to satisfy the same boundary
conditions as 1 given by Eqs.(45) and (46). Although
the density, entropy and velocity field are not changed
in the Eulerian sense by the above transformation,
there is a change of velocity év = vo(a + da) — vo(a)
in the Lagrangian sense corresponding to an infinites-
imal change da. The relation between the two in-
finitesimal variations da and dv is obtained from
Eq.(44) as 9y0a’ + (v - V)da' + (6v - V)a® = 0. Solv-
ing for 6v7 in the term (v - V)a! = dv’(da’/dz7), we
obtain

k
St = —% 0,0a'(t, )

0:8a'(t,x) = d;6a" + (v - V)da’

where (0x*/0a*)(8a’ /827)6v = 656v] = bv* for a
map z*(7,a) and its inverse a’(t,z) with 7 = ¢. This
is not a real change of the Eulerian velocity field
in the x-space. Therefore, the action with the La-
grangian (48) should not change by this permutation
of indistinguishable particles, and have a permutation
symmetry**.

The second integral of Eq.(48) is invariant be-
cause p and d®m = pd3¢ are not changed, while the
first integral is influenced by dv. Thus, the invariance
of the action is represented by

0= S/AﬂuiddT = /dT/dSa vk Gk

(70)

* The expression (68) is called unimodular or measure-preserving transformation by Eckart[17],
** This was connected with the particle-relabeling symmetry('9]. However, this must be interpreted by a real physical symme-
try of permutation of indistinguishable particles, rather than unphysical relabeling, although the relabeling leaves the desnity and

entropy unchanged as well.
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k
= —/dT/dSa vkai.ﬁrgai
da’

V = 0"V, o (72)

Using Eq.(69) and carrying out integration by parts,
we obtain

5 / Apuiadr = — / dr / LPa(V -0.(V, x 5A))

= [ar [ @a(o

Since the variation field §A is arbitrary, the action
principle requires

a(V - 8:5a) (71)

where

(Vo xV)-5A)

8, (Vo x V) =0 (73)

This equation, discovered by Eckart (1960)!17:1], rep-
resents a conservation law in the particle-coordinate
space. Its implication is considered in the next sub-
section.

6.6 Equation of Vorticity and Kelvin’s Cir-
culation Theorem
To see the meaning of Eq.(73) in the x-space,
let ¢(a,b,c) be any scalar function of particle coordi-
nates. Using Eqs.(72) and (40) for the definition of
= d(z)/d(a), we have the following identity!]

(Vax V) Vap=J(Vxv) Vo  (74)
Since 0V, = 0, we obtain 0;[(V, X V) - V,p] =0
from Eq.(73), equivalently we have
O-[J(V xv)-Vp] =0 (75)
Recalling that Jd3a = d®¢ is a volume three-form and
8-d3a = 0, this equation is
O:[(V x v) - Vepd®¢] =0 (76)

In terms of the differential forms!'!], the gradient of
a scalar function Vy is described by a one-form F*,
and the curl of a vector, w = V x v, is described by
a two-form 2

F' = 8,pdz + 9y¢pdy + 8,pdz
2% =wdy Adz + wydz Adz + w,dz A dy

Their exterior product is equivalent to the term inside

the [ ] of Eq.(76)
FIAR? =V (V xv)d®¢
(77)
d*¢ =dz Ady Adz

The derivative 0/0r is understood as the Lie deriva-
tive Lx with X = 0; +v'(t,x)9; (see the footnote to
§6.1). Applying the calculus of differential forms!',
the Eq.(76) is equivalent to

0= Lx(F'AR2*) = Lx(F') A 2P+

FYALx(2%) = FY A Lx(2%)
since Lx(F') = Lx odp =do Lxp = dodp = 0.
Assuming F! # 0, we obtain*

Lx(2%) =0= dw + curl(w x v) =0 (78)

Thus, the vorticity equation has been derived from the
conservation law Eq.(73) associated with the symme-
try of particle permutation. Using the vector identity,
Vx(wxv)= (v -V)w+ (V- -v)w— (w-V)v (since
V - w = 0) together with the continuity Eq.(42), this

is rewritten as
d /fw w
#(5)=(5v) 0

In addition, the law (73) leads to the Kelvin’s
circulation theorem!'®. Consider a closed loop C, in

a-space and denote its line element by da. Using
Eq.(72), we have

V.-da=wv-d¢ (80)

where d¢ is a corresponding line element in physical
&-space (equivalently x-space). From Eq.(73), we ob-
tain the following integration law

where S, and dS, are an open surface bounded by
the loop C, and its surface element in a-space, respec-
tively. Thus, using Eq.(80), we obtain the Kelvin’s
circulation theorem

o, v-dE =0 (82)
Ca (g)

where C, (&) is a closed material loop in &-space (x-
space) corresponding to C,,.

* Lo, (£22) yields 8w, whereas Cviai(fﬁ) yields curl(w x v) + div(w)v = curl(w X v).
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Bretherton!'® considered the invariance of the
action integral under a reshuffling of indistinguishable
particles which leaves the fields of velocity, density
and entropy unaltered, and derived the Kelvin’s cir-
culation theorem directly. The present derivation is
advantageous in the sense that a local form Eq.(73) is
derived.

The description in this section aims to unify the
contributions of Refs.[17~19] from the point of view
of adiabatic particle permutation symmetry.

7 SUMMARY AND CONCLUSIONS

Following the gauge principle in the quantum
field theory, the present paper tried to find a sce-
nario in fluid flow which has a formal equivalence
with the gauge theory. The free-field Lagrangian de-
fined initially satisfies global gauge invariance as well
as Galilei invariance. However, the equation derived
from the variational principle does not satisfy local
gauge invariance. This is because local gauge trans-
formation of velocity v(x) requires the vorticity in the
velocity field, whereas the action principle applied to
the initial Lagrangian results in the equations for po-
tential flows, i.e. irrotational flows. In complying with
the local gauge invariance, a gauge-covariant deriva-
tive is defined in terms of a gauge field. The Galilei in-
variance requires that the gauge field should coincide
with the vorticity. As a result, the covariant deriva-
tive of velocity is found to be given by the material
time derivative of velocity.

Using the gauge-covariant derivative, a new
variational formulation is attempted successfully by
means of isentropic material variations, and the Eu-
ler’s equation of motion is derived for rotational isen-
tropic flows from the Hamilton’s principle. This for-
mulation is considered to unify traditional two ap-
proaches. Namely, the Eulerian approach is used to
derive an irrotational free-field which does not nec-
essarily specify the motion £(¢) of individual mate-
rial particles, while the Lagrangian approach is used
for full material variation including rotational velocity
field to satisfy local gauge invariance.

There are some byproducts from the present for-
mulation. The global SO(3) gauge invariance infers
a Noether’s conservation law, which is found to be
the conservation of total angular momentum. In ad-
dition, the Lagrangian has a symmetry with respect
to particle permutation, which leads to a local law of
vorticity conservation, i.e. the vorticity equation as
well as the Kelvin’s circulation theorem. Thus, it is
found that the well-known equations are related to
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certain symmetries of the fluid system.

The present gauge theory provides a theoretical
ground for physical analogy between the aeroacous-
tic phenomena associated with vortices®%8:9 and the
electron and electromagnetic-field interactions. In
particular, it is considered that the Aharonov-Bohm
effect in quantum mechanics(”) has a direct analogy
with the scattering of sound waves or shallow water
waves by the interaction with vortices!:6].
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Appendix

Additional Description to the Gauge Theory in
Section 2

The replacement of 9, with V, = 9, —igA,(z) de-
fined by Eq.(5) in the quantum electrodynamics of Section
2 (1) introduces in the Lagrangian (1) an interaction term
—A,J* between the gauge field A, and the electromag-
netic current density (matter field) J* = —qepy*ap.

To arrive at the complete Lagrangian, it remains to
add an electromagnetic field term _16_7rF””FW to the
Lagrangian, where F,, = 0,A, — 0,A,, and F"' =
9" F,59°” with the metric tensor g =diag(—1,1,1,1).
Assembling all the pieces, we have the Lagrangian for
quantum electrodynamics

1

Aqed - Afree - 16_71'

—A,J" F, F" (A1)
Thus, variation with respect to A, yield the equations for
the gauge field A,, i.e. Maxwell’s equations in electro-
magnetism, whereas variation of Aqeq with respect to
yields the equation of quantum electrodynamics, i.e. Dirac
equation with electromagnetic field.

Using the notations B = V x A and E = —V¢ —
¢ 18, A of the magnetic three-vector B and electric three-
vector E, we have

0 —-Ey —E» —E3

E, 0 Bs -Bs
F, =0,A, —0,A, =
E; -Bs 0 B

Es By, —-DB; 0

In the Yang-Mills’s system of Section 2 (2), the gauge-
covariant derivative is defined by V,, = 9, — igo - A, (z).
In addition, the following three gauge fields (colors) are
defined: A* = (A, A% A% A%) with k =1,2,3. The new
fields A', A% A® are the Yang-Mills gauge fields. The con-
nection igo - A, leads to the interaction term, that couples
the gauge field with isospin currrent, corresponding to the
middle term of Eq.(A1). Fianlly, a gauge field term (called
a kinetic term, corresponding to the third term of Eq.(A1)
should be added to complete the Yang-Mills action func-
tional.



